Developing SageTV Plugins
Introduction

Version 7.0 of SageTV introduced a new plugin system that facilitates easy installation, removal, enabling, disabling and configuration of a variety of plugin types for the SageTV platform. Previously, users had to manually download different packages and install them by hand and even manually edit various configuration/properties files in order to extend the functionality of SageTV. The main goal of the new system is to automate this entire process and remove the difficulties associated with adding the enhancements that plugins provide to the end user. A new event system was also built to enable these new types of plugins to better respond to various things that would occur within the SageTV software as well.

This guide is intended for developers or packagers of plugins for SageTV; or for users who wish to further understand how the plugin system works internally in SageTV.

System Overview

The new plugin system has the concept of a 'repository'. This is a place where all of the information about currently available plugins is stored. The repository exists as an XML file on the SageTV webservers and is accessible via the path http://download.sagetv.com/SageTVPlugins.xml. V7 of SageTV will automatically download this file and check for new versions on a regular basis which then enables it to display a list of all the currently available plugins within the user interface. Updating of this XML file is handled automatically by SageTV and there are web forms available to submit new plugins, upgraded plugins and also plugin removal.

The SageTVPlugins.xml file consists of many elements that are named SageTVPlugin. Each of these elements is considered to be a 'manifest' which defines the specifics of what an individual plugin is. The manifest lists the name, unique ID, description, dependencies, author, installation packages and other meta information about the plugin it is describing.

Plugins can be of various types; and there are six different types of plugins in the new system which will be explained shortly. The different plugin types are mainly for the purpose of organizing them in the user interface so all of the plugins are not simply presented as one large list of items to the user.

A few new interfaces, sage.SageTVPlugin, sage.SageTVEventListener and sage.SageTVPluginRegistry were created to facilitate new kinds of interaction with SageTV. The SageTVEventListener interface is simplistic and used for listening to events that occur within the system, such as RecordingStarted or ClientConnected. The SageTVPlugin interface extends the SageTVEventListener interface and is used by plugins that are intended to be 'live' in the system. These plugins can be started, stopped, enabled, disabled and configured through the new plugin user interface. The SageTVPluginRegistry is another interface which can be used by plugins or other code to post events into the system which can then be received by objects registered to listen for them. These will all be explained in more detail later.

The plugin system can also be used for other kinds of extensions, such as complete STV packages or collection of channel logos or fanart. It's important to note that not all plugins in the repository need to implement the SageTVPlugin interface. Plugins are sometimes just JAR files, STVs, Themes or a collection of images to be used in the user interface.

The plugin system also has the ability to control restarting of the SageTV application to enable replacing files that cannot be modified at runtime (such as JARs, DLLs, etc.). It will do its best to avoid restarting the application if possible (such as when new JAR files are added); but in most cases of plugin removal or upgrades, a restart will be required and the user will be notified of such. This is all handled automatically by the plugin system.

There's also a new Plugin API which is used mainly by the user interface in the V7 STV that handles interaction with the plugin system. It's also the way to get access to the SageTVPluginRegistry interface for posting custom events.

Plugin Types

The new plugin system has six different types of plugins in it. These are outlined here:

· Standard - This type of plugin is essentially the general type. Any plugin that actually contains an implementation of the SageTVPlugin interface falls under this type. It also contains other plugins that do not fit under any other category; but would be considered a 'plugin' that the user wants to select and install all by itself. Examples are the SageTV WebServer or the Batch Metadata Tools (BMT).

· STV - This type of plugin is for complete STVs that are packaged as a plugin to facilitate easy installation. They are just downloaded to the user's system and then the user can select to load that new STV.

· STVI - This plugin type is for STV Imports which modify the user interface functionality of SageTV through STVI imports into the currently loaded STV. If a plugin contains STVI imports; then it must be of this type of the STVI imports will not be processed.
· Theme - This is for plugins that contain files for an alternate Theme to be used by an STV. They are simply a collection of files that have no functionality.

· Images - This is for plugins that are collections of images. These can be things like channel logos or fanart; or simply other replacement images to be used in the user interface. They are simply a collection of files that have no functionality.

· Library - This is for plugins that are dependencies of other plugins and in most cases have no useful purpose if installed alone. An example of this is various parts of the 'commons' API which are packaged as JAR files. These exist as library plugins which can then be used as dependencies of other plugins.

Plugin Manifests

All plugins have one thing in common; they must have a manifest that defines them. A manifest is an XML element that contains all the descriptive information needed to present the plugin in the UI, install the plugin and also resolve any dependencies needed by the plugin. Here is an example of a simple plugin manifest:

<SageTVPlugin>

 <Name>concurrent</Name>

 <Identifier>concurrent</Identifier>

 <Description>SageTV JAR Plugin for concurrent-1.3.2.jar</Description>

 <Author>stuckless</Author>

 <CreationDate>2010-04-08</CreationDate>

 <ModificationDate>2010.04.09</ModificationDate>

 <Version>1.3.2</Version>

 <Desktop>false</Desktop>

 <PluginType>Library</PluginType>

 <Package>

 <PackageType>JAR</PackageType>

 <Location>http://download.sage.tv/plugins/stuckless/JARS/concurrent-1.3.2.jar.zip</Location>

 <MD5>6eb3f3b8ce85aaf8c83e3a6db251b986</MD5>

 </Package>

</SageTVPlugin>

The above manifest is for a Library plugin that consists of a support JAR file used by other plugins. All manifests must have an outer XML element named <SageTVPlugin>. Within that element there are other various elements that can exist, some of which are required. A couple of those elements also support child elements inside of them, specifically the Package and Dependency elements. Here is a list of all the possible elements that can exist underneath the <SageTVPlugin> tag:

· Name - (Required) - Specifies the name of the plugin. This should be a short and descriptive name; any characters are valid in this name. This is used when presenting the plugin to the user within the UI. The name must be unique relative to other plugins in the repository.

· Identifier - (Required) - Specifes the identifier (ID) of this plugin. This must be not contain any spaces or non-alphanumeric characters (i.e. only a-z and 0-9 are allowed). This ID must be unique (case insensitive) relative to the other plugins in the repository. This ID is the 'key' used when referring to the plugin as a dependency or other lookup techniques in the API.
· Version - (Required) - Specifies the version number of this plugin. This must start and end with a number; and can contain periods (.) to separate major/minor/etc. version information. There is no restriction on the number of levels used in the version information. When creating an upgrade to an existing plugin; the version number of the upgraded plugin must be greater than that of the existing plugin. There can also be an attribute 'beta=true' in the opening Version tagused to indicate that this is a beta version of the plugin; such as <Version beta=true>1.0</Version>.
· Description - (Required) - Specifies a textual description of this plugin. This will be displayed in the user interface. Ideally it should have a short description at the beginning which will be visible in the view where all the plugins are listed. That should be followed up by a longer description which will be visible in the detailed information for the plugin. The entire description must be contained within the single Description tag. Any text is valid within this element.
· Author - (Required) - Specifies the author of the plugin. The general custom is to use one's forum handle; however, this is up to the author themselves and you may use your full name if you wish. If multiple authors are to be listed; they all should be included within a single <Author> tag.
· PluginType - (Required) - Specifes the type of this plugin. There are six valid values for this field as described in the previous 'Plugin Types' section of this document. The valid values are: Standard, STV, STVI, Theme, Images and Library.
· CreationDate - (Optional) - Specifies the date on which this plugin was originally created. The format for this date should be YYYY-MM-DD or YYYY.MM.DD. Serves no functional purpose; solely for display in the UI.
· ModificationDate - (Optional) - Specifies the date on which this plugin was last modified. When creating new versions of a plugin; this date should be changed. The format for this date should be YYYY-MM-DD or YYYY.MM.DD. Serves no functional purpose; solely for display in the UI.
· ReleaseNotes - (Optional) - Specifies release notes for a plugin for historical purposes. Serves no functional purpose; solely for display in the UI.
· ResourcePath - (Optional) - Specifies a path relative to the root of the SageTV working directory (varies with platform; on Win/Linux it is the installation directory; on Mac it is the SageTV directory within Application Support) where the plugin will be storing resource files specific to itself. SageTV does nothing to enforce this rule; it is simply meant to be a guide for where other plugins can go to look for resources related to a specific plugin that is installed. Essentially; all this tag does is specify the return value of the GetPluginResourcePath(Plugin) API call. The working directory can be accessed by the Java API call java.lang.System.getProperty("user.dir").
· Screenshot - (Optional) Specifies a URL of an image which represents a screenshot of this plugin. Multiple Screenshot tags may exist under the SageTVPlugin tag. The screenshots will be avilable within the UI for viewing when browsing the list of plugins.
· DemoVideo - (Optional) Specifies a URL of a video which represents a demo of this plugin. This can either be a direct link to a video file or it can be a link to a YouTube or Google video. Multiple DemoVideo tags may exist under the SageTVPlugin tag. The videos will be available for viewing directly within the SageTV UI when browsing the plugins.
· Webpage- (Optional) Specifies a URL of a website which contains more information about this plugin. Multiple Webpage tags may exist under the SageTVPlugin tag. If the UI is running in an environment that can launch a web browser; then the user will be given the option to go to the website when browsing the plugins.
· ImplementationClass - (Optional) - This tag is only valid when the PluginType is specified as Standard. The value should be a fully qualified Java class name that implements the sage.SageTVPlugin interface. The details of this implementation will be discussed later in the document.
· Desktop - (Optional) - Can be used to specify that a plugin requires a desktop environment in order to properly function. The text inside of this tag must be either true or false. If the tag does not exist; it’s the same as if it was specified with a value of false. When this is set to true; then the plugin can only be enabled if the UI is running from SageTV or SageTVClient (not the placeshifter or media extender). Setting this to true also restricts plugins from being able to run in a server-only context where there is no user interface.
· OS - (Optional) - Specifies the supported operating systems for this plugin. If there are no OS elements; then that indicates all operating systems are supported by this plugin. If any OS tags exist; then only the operating systems listed in the tags will be allowed to use this plugin. Multiple OS tags may exist underneath the SageTVPlugin element. Valid values inside of the OS tag are Linux, Windows or Macintosh.
· STVImport - (Optional) - Specifies the pathname relative to the STVI install location of an STVI for this plugin. Multiple STVImport elements may exist underneath a SageTVPlugin element. If the plugin is enabled; then the corresponding STVIs will be imported at the time the STV is loaded. More details on this will be explained in the 'STV Imports' section later. This tag is only valid for plugins of type STVI.
· Package - (Optional) - Used to specify details of installation packages. Multiple Package tags may exist inside a SageTVPlugin tag. Package tags are processed in the order they appear in the manifest when installing the plugin. More information is in the following section on Package tags specifically.
· Dependency - (Optional) - Used to specify the dependencies of this plugin. Multiple Dependency tags may exist inside a SageTVPlugin tag. More information is in the following section on Dependency tags specifically.
The Package tag has additional elements underneath it which can be defined. A Package essentially is a URL that points to a zip file. That zip file is then extracted to a specified location in the filesystem when the plugin is installed. Any path information and timestamps in the zip file are preserved. And its files are removed when the plugin is uninstalled. There is also an option to specify whether or not the items in a specific package should overwrite their target files should they already exist in the filesystem. Multiple Package tags may exist inside a SageTVPlugin tag. Package tags are processed in the order they appear in the manifest when installing the plugin. Here's a description of what elements can be defined inside of a Package tag:

· PackageType - (Required) - Specifies the type of Package this Package element refers to. The PackageType indicates where the contents of the package URL should be extracted to. The valid values for PackageType are JAR, System, STV, STVI, ChannelLogo and FanArt. JAR indicates to extract the contents to the JARs subdirectory of the SageTV installation. System indicates to extract the contents to the working directory of the SageTV installation. STV indicates to extract the contents to the STVs folder in the SageTV installation. STVI indicates to extract the contents to the folder that contains the XML file of the currently loaded STV. ChannelLogo indicates to extract the contents to the folder that is configured to hold the ChannelLogos for SageTV (by default it's the folder named ChannelLogos underneath the working directory). FanArt indicates to extract the files to the FanArt storage location which is determined by a SageTV property (by default it’s the folder named FanArt underneath the working directory).
· Location - (Required) - Specifies the URL the package can be downloaded from. This should be an http or ftp URL and should be generally accessible on the open Internet. More information is available in the section on 'Plugin Hosting'.

· MD5 - (Required) - Specifies the MD5 sum of the package file at the specified location. If you are unfamiliar with calculating MD5 sums for a file; you can use the SageTV Studio to assist you. Just go to Tools->Expression Evaluator and enter the following: CalculateMD5Sum("C:\\foobar.zip") and it will return the MD5 value for you. (if you're entering paths with backslashes in them on Windows, then you need to use 2 backslash characters in the dialog for each one in the path).

· Overwrite - (Optional) - Specified whether or not the package contents should overwrite existing files in the filesystem. If not specified, this defaults to true. SageTV will automatically backup any files that are replaced during an installation and restore them to their proper state on removal of a plugin. The main purpose of this tag is for when default configuration files are included in a plugin and it would be undesirable to overwrite them when the plugin is upgraded. Valid values inside of this tag are either true or false.

The Dependency tag also has additional elements underneath it which can be defined. A Dependency refers to a requirement of the system that must exist in order for the plugin to be installed or enabled. The OS and Desktop tags also provide another means of specifying dependencies for a plugin. If a plugin has dependencies which reference other plugins, then the dependent plugins will automatically be installed when the plugin itself is installed. This also applies to upgrades; and when a plugin upgrade requires that dependencies are also upgraded; those upgrades will be performed automatically. If multiple dependencies are to be specified, each one should be defined in its own dependency element. Even though the STV, Plugin, Core and JVM tags are listed as 'Optional'; it is a requirement that one and only one of them is specified inside of a Dependency tag. The following elements are allowed inside of the Dependency tag:
· Plugin - (Optional, see note above) - Indicates that this dependency refers to another plugin in the repository. This can be a plugin of any type; but in general it should refer to a Standard or Library type plugin. The value inside of the Plugin tag should be the Identifier of the plugin that is the dependency.

· STV - (Optional, see note above) - Specifies an STV that must be loaded in order for this plugin to be enabled. If an STV dependency is specified, it is not a requirement for installation; but it is a requirement for enabling a plugin. The value inside of the STV tag should refer to the 'STVName' of an STV. This is defined by the value of an attribute named 'STVName' that should exist underneath a Theme Widget named 'Global' in the STV itself. Multiple dependency tags with an STV inside of them can be defined in one manifest if more than one STV can support this specific plugin.

· Core - (Optional, see note above) - Specifies a version of the SageTV core program that is required in order to use this plugin. No value is required inside of this tag, it can simply be <Core/>.

· JVM - (Optional, see note above) - Specifies a version of Java that is required in order to use this plugin. No value is required inside of this tag, it can simply be <JVM/>.

· MinVersion - (Optional) - If specified; indicates a minimum version (inclusive) of this dependency that must exist in order to satisfy this dependency requirement. If no MinVersion or MaxVersion element is specified, then there are no version restrictions on the dependency. It is allowed to specify only a MinVersion without specifying a MaxVersion.
· MaxVersion - (Optional) - If specified; indicates a maximum version (inclusive) of this dependency that must exist in order to satisfy this dependency requirement. If no MinVersion or MaxVersion element is specified, then there are no version restrictions on the dependency. It is allowed to specify only a MaxVersion without specifying a MinVersion; however it is considered bad form to do such.
Submitting Plugins

The process for submitting new plugins to the official plugin repository is done using a web-based form. This form can be accessed at http://download.sagetv.com/pluginsubmit.html. This form requires you to enter your name, email and forum handle to identify the plugin submitter. There is also a required Plugin Identifier field which must match the <Identifier> in the plugin manifest. There is also a field for the manifest itself and another optional field for comments.

There are four different types of requests; New Plugin, Upgrade Plugin, Remove Plugin and Test Plugin. 'New Plugin' is used when a plugin with a previously unused identifier is being submitted. These identifiers must be unique; and this will be enforced. After submitting the form; an email will be sent to the address entered with the automated test results of the plugin manifest. It will verify all of the information in the manifest for syntax and consistency according to the rules specified above. It will also ensure the files in the Packages are at the specified URLs and that their MD5Sums match what is specified in the manifest. It will also ensure that any dependencies specified in the manifest already exist in the repository. If the plugin has passed automated testing; then there will be a link in the email that must be clicked on in order to confirm the request. After clicking on the link the online repository will be automatically updated.

Upgrade Plugin is used when the plugin submitter wishes to submit a new version of their plugin. The new manifest must have a version number that is higher than the one that currently exists in the repository. The same email address used for the New Plugin request must be used for the Upgrade Plugin request or the request will be rejected. A confirmation email will be received with the test results, and if it passes a confirmation link must be clicked on in order to commit the new version.

Remove Plugin is used to remove a previously submitted plugin from the repository. A confirmation email will be sent as well in this scenario with a link the submitter must click on in order to confirm the removal.

Test Plugin will simply send the results of automated testing back to the submitter via email. No changes will be made to the repository as a result of this.

If the need arises for an email address to be changed; just respond to the automated email you receive from the plugin system indicating so and SageTV support staff will assist in making the change.

Plugin Hosting

Plugin manifest files will usually have Package items in them. These Package items have a URL which specifies the location that the installation files for the plugin should be downloaded from. It is recommended that the version number of the plugin is used in the URLs that reference them. This will then allow seamless transitions from one version to the next. There are various options for how to offer one's plugins for downloading.

· External Hosting - Plugins can be hosted on a webserver anywhere that is accessible on the open Internet. Examples are Google Code, SourceForge or on one's own personal website. SageTV prefers that this method is used so long as that source is reliable as this reduces bandwidth costs for plugin downloads. The download links must be directly accessible as well (i.e. no RapidShare or similar sites that require clicking through webpages to reach a download)

· Forums Downloads - Plugins can be uploaded to the Download section of the SageTV forums. This is not ideal though as it doesn't lend itself to updating the plugin with new versions easily without overwriting the existing files that were uploaded. But if you're just repackaging an existing plugin that's already available there for downloading with the automated plugin system; this is an acceptable way of doing it.

· SageTV Hosting - SageTV can host your plugin downloads for you on our http://download.sagetv.com server. Uploading to this location is not directly accessible though. Instead; files must be uploaded to our semi-public FTP site located at ftp://download2.sagetv.com. To gain access to this FTP site; simply send an email to support@sagetv.com and ask them for the login information to the download2 FTP server and it will be sent to you. Then create a directory inside the 'plugins' folder with your forum username. Then inside that directory create another directory with the identifier of your plugin. Then put your plugins in that directory. For example, if you were user 'narflex' and created a plugin with the identifier 'dishwasher' that had a package named 'silverware-1.0.zip' it would be uploaded to ftp://download2.sagetv.com/plugins/narflex/dishwasher/silverware-1.0.zip. Then in the plugin manifest you would specify the Location of that Package to be http://download.sagetv.com/plugins/narflex/dishwasher/silverware-1.0.zip. When the plugin manifest is submitted; the reference to download.sagetv.com will be detected and then the files will automatically be FTP'd from the download2.sagetv.com server to the download.sagetv.com server. The transfers will not occur if the manifest fails automated testing. Their MD5Sums will be verified to ensure that another user with access to the FTP server will not have tampered with them. Once they have been transferred to the download.sagetv.com server; only SageTV staff will have access to them to prevent unauthorized tampering.
STV Imports

The <STVImport> tag is used in plugins that have an STVI component that they wish to have imported into the STV (SageTV Application Package) that a user is running. When an STV is loaded by SageTV; it will then check the current set of plugins of type STVI that the user has installed. Any of those plugins that are enabled and have STVImport items associated with them will then be selected for importing. The import process is done at the time the STV is loaded. Contrary to prior versions of SageTV; this will not automatically create and save a new XML file with the imported plugin information. The imports will be processed every time the STV is loaded.

If STVI imports are currently active and the SageTV Studio is used; there will be a warning in the title bar indicating that the Widgets loaded in the Studio do not match what is in the XML file due to imports being active. If the user attempts to save an STV with active imports as an XML file; a warning dialog will be presented to confirm they understand what they are actually saving.

STVI plugins can also be developed for STVs that do not have a UI for managing SageTV Plugins or they can even be developed to target multiple STVs. There's one thing that needs to be done differently in this case. Packages should not be used of type STVI. Instead, they should be of type STV with a top level path being a folder that represents the plugin itself. For example, if an STVI plugin called "CallerID" is written which supports multiple STVs, then the packages that contain STVI related files should be of type STV and have paths like CallerID/MyImport.stvi and CallerID/image.png. If an STVI is loaded; then images will also be searched for in paths relative to any enabled STVIs. So for the prior example, the CallerID STVI could simply reference 'image.png' and the core would properly resolve it to the one in the CallerID folder itself (assuming it doesn't exist somewhere else in the search path before that).
SageTVPlugin Implementations

For plugins that are of type 'Standard', there is an option of specifying an <ImplementationClass> in the manifest. This class must implement the sage.SageTVPlugin interface and is the means by which plugins are instantiated, started, stopped, destroyed and sent events. The SageTVPlugin interface extends the sage.SageTVEventListener interface to allow creation of other objects that are solely for the purpose of listening for events. There is also a sage.SageTVPluginRegistry interface which is used for subscribing and unsubscribing to events. The interface definitions are as follows:
sage.SageTVPluginRegistry
/**

 * This interface is used for the first argument passed to the constructor of
 * a SageTVPlugin implementation.

 * It is also the interface returned from the Plugin API call
 * GetSageTVPluginRegistry() which can be used to subscribe/unsubscribe to

 * SageTV events from outside of the plugin framework.

 */
public interface SageTVPluginRegistry

{

// Call this method to subscribe to a specific event

public void eventSubscribe(SageTVEventListener listener,
String eventName);

// Call this method to unsubscribe from a specific event

public void eventUnsubscribe(SageTVEventListener listener,
String eventName);

// This will post the event asynchronously to SageTV's plugin event
// queue and return immediately

public void postEvent(String eventName, java.util.Map eventVars);

// This will post the event asynchronously and return immediately;
// unless waitUntilDone is true, and then it will not return until all // the subscribed plugins have received the event.

public void postEvent(String eventName, java.util.Map eventVars,

boolean waitUntilDone);

}

sage.SageTVEventListener
/**

 * Interface definition for implementation classes that listen for events

 * from the SageTV core

 *

 * Variable types are in brackets[] after the var name unless they are the
 * same as the var name itself.

 * List of known core events:

 *

 * MediaFileImported - vars: MediaFile

 * ImportingStarted

 * ImportingCompleted
 * RecordingCompleted (called when a complete recording is done)

 *
vars: MediaFile

 * RecordingStarted (called when any kind of recording is started)
 *
vars: MediaFile

 * RecordingStopped (called whenever a recording is stopped for any reason)

 *
vars: MediaFile

 * AllPluginsLoaded

 * RecordingScheduleChanged

 * ConflictStatusChanged

 * SystemMessagePosted
 *
vars: SystemMessage

 * EPGUpdateCompleted

 * MediaFileRemoved

 *
vars: MediaFile

 * PlaybackStopped (called when the file is closed)

 *
vars: MediaFile, UIContext[String], Duration[Long], MediaTime[Long],
 *

ChapterNum[Integer], TitleNum[Integer]

 * PlaybackFinished (called at the EOF)
 *
vars: MediaFile, UIContext[String], Duration[Long], MediaTime[Long],
 *

ChapterNum[Integer], TitleNum[Integer]

 * PlaybackStarted
 *
vars: MediaFile, UIContext[String], Duration[Long], MediaTime[Long],
 *

ChapterNum[Integer], TitleNum[Integer]

 * FavoriteAdded

 *
vars: Favorite

 * FavoriteModified

 *
vars: Favorite

 * FavoriteRemoved
 *
vars: Favorite

 * PlaylistAdded
 *
vars: Playlist, UIContext[String]

 * PlaylistModified

 *
vars: Playlist, UIContext[String]

 * PlaylistRemoved
 *
vars: Playlist, UIContext[String]

 * ClientConnected

 *
vars: IPAddress[String], MACAddress[String] (if its a

 *

placeshifter/extender, MACAddress is null otherwise)

 * ClientDisconnected
 *
vars: IPAddress[String], MACAddress[String] (if its a
 *

placeshifter/extender, MACAddress is null otherwise)

 */
public interface SageTVEventListener

{

// This is a callback method invoked from the SageTV core for any
// events the listener has subscribed to.

// See the sage.SageTVPluginRegistry interface definition for details
// regarding subscribing and unsubscribing to events.

// The eventName will be a predefined String which indicates the event

// type.

// The eventVars will be a Map of variables specific to the event
// information. This Map should NOT be modified.

// The keys to the eventVars Map will generally be Strings; but this
// may change in the future and plugins that submit events

// are not required to follow that rule.

public void sageEvent(String eventName, java.util.Map eventVars);

}

sage.SageTVPlugin

/**

 * This interface should be implemented by a Java class to act as a
 * generalized SageTV plugin

 *

 * IMPORTANT: The implementation class MUST have a single argument
 * constructor that takes a sage.SageTVPluginRegistry object

 * as its only argument. And/or it may also have a two argument constructor
 * which takes a boolean as the second argument.

 * The boolean argument will be set to true if the plugin should reset itself
 * to the default configuration at the time of instantiation.

 */

public interface SageTVPlugin extends SageTVEventListener

{

// This method is called when the plugin should startup

public void start();

// This method is called when the plugin should shutdown

public void stop();

// This method is called after plugin shutdown to free any resources

// used by the plugin

public void destroy();

// These methods are used to define any configuration settings for the

// plugin that should be presented in the UI. If your plugin does not
// need configuration settings; you may simply return null or zero from
// these methods.

// Returns the names of the settings for this plugin

public String[] getConfigSettings();

// Returns the current value of the specified setting for this plugin

public String getConfigValue(String setting);

// Returns the current value of the specified multichoice setting for

// this plugin

public String[] getConfigValues(String setting);

// Constants for different types of configuration values

public static final int CONFIG_BOOL = 1;

public static final int CONFIG_INTEGER = 2;

public static final int CONFIG_TEXT = 3;

public static final int CONFIG_CHOICE = 4;

public static final int CONFIG_MULTICHOICE = 5;

public static final int CONFIG_FILE = 6;

public static final int CONFIG_DIRECTORY = 7;

public static final int CONFIG_BUTTON = 8;

public static final int CONFIG_PASSWORD = 9;

// Returns one of the constants above that indicates what type of value

// is used for a specific settings

public int getConfigType(String setting);

// Sets a configuration value for this plugin

public void setConfigValue(String setting, String value);

// Sets a configuration values for this plugin for a multiselect choice

public void setConfigValues(String setting, String[] values);

// For CONFIG_CHOICE settings; this returns the list of choices

public String[] getConfigOptions(String setting);

// Returns the help text for a configuration setting

public String getConfigHelpText(String setting);

// Returns the label used to present this setting to the user

public String getConfigLabel(String setting);

// Resets the configuration of this plugin

public void resetConfig();

}
SageTV Plugin Lifecycle

When the SageTV application is started; it will check the list of all the installed plugins to determine which ones are 'Standard' plugins that have an <ImplementationClass> defined. These plugins are then all instantiated using their constructors. After this occurs; all of the plugins will then have their start() methods called sequentially. If a plugin has any dependencies; then it will be ensured that their dependencies are started before the plugin itself. If there are any failures instantiating or starting the plugin; the plugin will then be put into a 'Failed' state. If the plugin is successfully started, then it is put into the 'Enabled' state.

If a plugin is installed; after installation the plugin will then be started immediately unless a restart of the system is required to complete the installation.

While SageTV is running; plugins may also be enabled or disabled if they are a Standard type plugin that has an <ImplementationClass> or if they are an STVI type plugin. For STVI plugins, enabling and disabling will then prompt for user interface reloads. Further details on this process can be found in the section labeled 'STV Imports'. When a Standard plugin is enabled; it will then be instantiated and its start() method called. When it is disabled; its stop() method and then its destroy() method will be called and the implementation object will be discarded.

Upon shutdown of SageTV; all plugins will have their stop() methods called; and then after that all of the destroy() methods will be called. The sequence for calling the stop & destroy events will be the reverse order that the start() methods were called in.
Event System

Version 7 of SageTV has a new event system that can be utilized by SageTV Plugins. The purpose of the new event system is to provide a better way of notifying plugins about events that have occurred inside of the SageTV core so they can respond to them in various ways. A complete list of the current events is available in the SageTVEventListener.java file hosted at the location specified in the 'Plugin System Interface Files' section.

When a SageTVPlugin implementation is instantiated; as part of its constructor, it will receive an object that implements the sage.SageTVPluginRegistry interface. This object may be used for subscribing and unsubscribing from specific named events. There is also an API called in the Plugin API named GetPluginRegistry() which can be used from arbitrary Java code to register any object that implements the SageTVEventListener interface. Through this technique; objects that are not sage.SageTVPlugin implementations can then also receive SageTV events.

The event queue inside of SageTV that distributes these events is single-threaded. Any events received by the queue before the plugins have all been started will be held onto and then distributed after plugin startup is complete. Each event will be sent to every subscribed listener; and then the next event will be processed after that. When a SageTVPlugin object (which extends the SageTVEventListener interface) is disabled while SageTV is still running; it will automatically have its implementation object unsubscribed from any events it is listening to.
Plugin Installation/Upgrade/Uninstallation Process

Installation of plugins is a fairly straightforward process. The first thing that's done is all the dependencies are verfied; if there are any conflicting dependencies, then plugin installation will be rejected (i.e. trying to install a Windows only plugin on Linux; or having an installed plugin with a dependency that requires a version that is not compatible with the plugin that is trying to be installed). Once compatability is confirmed; all of the Package elements specified in the plugin's manifest will be downloaded and their MD5Sums will be verified.
Then if there are any dependencies for the plugin that are not installed yet or need to be upgraded to meet the dependency requirements of the new plugin; those installations/upgrades will be performed next.

After the dependencies are satisfied; each of the individual Packages will be extracted to the filesystem. Each Package MUST be a Zip archive file. The PackageType will determine the location that the zip archive is extracted to. Any relative path information in the Zip archive will be preserved; any directories that need to be created will be; and the timestamps for all files in the archive will also be preserved. If a file that is to be extracted already exists in the filesystem; then the Overwrite tag in the Package will determine what is done. If Overwrite is false; then that file will be skipped. If Overwrite is true; then the file will be either overwritten or staged for overwriting after the next restart of SageTV. Before any file is overwritten; it will be backed up automatically by SageTV so it can be restored when the plugin is uninstalled. Certain file types cannot be modified while SageTV is running; such as JAR files, native libraries (.dll or .so files), class files or any other file that is locked by the operating system. If SageTV detects the case where it cannot overwrite the file immediately; it will create 'staging' directives that inform it what to do on the next restart in order to put the filesystem into the proper state. When a plugin installation complete; the user will be notified if a restart is required in order to complete installation.

After extraction of all the packages is complete; the plugin will be enabled by default. If a restart is not required in order to complete the install; then the plugin will also be started if it is a Standard type plugin with an <ImplementationClass> defined.

When a plugin is uninstalled; SageTV will first check to see if there are any other plugins that are dependent upon it; if so, then uninstallation will not be allowed and the dependent plugins must be removed first. Then the plugin will be disabled. After that; all of the files that were installed by the plugin that have not been modified since installation will be removed. Any directories created by the plugin installation will also be removed; unless they are not empty. If a file was overwritten as part of the plugin installation; and that file is now being removed; the version of the file that existed before the plugin installation will then be restored. If plugin uninstallation requires removal of a file that can't be removed while SageTV is running (such as described above in the installation process); then staging directives will be created so SageTV knows how to modify the filesystem on the next restart to put it into the proper state. The user will be notified if restart is required.
The upgrade process for plugins is simply an uninstallation followed by an installation. The current version is removed and then the new version is installed. The only difference between this process and a normal uninstall and then install is that the upgrade process allows removal of plugins that other plugins are dependent upon since the following installation will then satisfy this requirement. Also; all of the packages for the new installation are downloaded and verified before the uninstallation occurs.

Plugin System Interface Files

There are three new Java interfaces associated with the new plugin system. The class files for these interfaces are contained inside the Sage.jar file that is part of every SageTV installation. This JAR file can be linked against in the compiler classpath when compiling Java implementations that utilize these interfaces. The source files for these interfaces are available online at the following locations:

http://download.sagetv.com/SageTVEventListener.java

http://download.sagetv.com/SageTVPlugin.java

http://download.sagetv.com/SageTVPluginRegistry.java
The SageTVEventListener.java file contains the latest list of events that can be subscribed to and their associated parameters as well. That file will be updated whenever events are added or modified.

Client/Server Related Information

When a plugin is installed by SageTV; it is installed into the filesystem of the computer it is running on. Any instance of SageTV that share the same filesystem, will also share the same list of installed plugins. The SageTVService, SageTV Application, SageTV Placeshifter, SageTV Media Extenders and localhost connected SageTVClients all would share the same filesystem. SageTVClient instances connecting from a different PC will have a different filesystem than the server they connect to. In the case of a non-localhost SageTVClient; then there will be two lists of installed plugins in the user interface. One for 'Client' plugins and one for 'Server' plugins. Both of them can be managed from within SageTVClient. They can also be enabled/disabled independently. If a plugin requires running in a server only; this should be outlined clearly in the description of the plugin itself. There is currently no requirement that can enforce this.

STVI plugins can be enabled/disabled relative to any specific user interface. Each extender, placeshfter or client will be able to individually control this. For Standard type plugins with an <ImplementationClass> that are tagged as DesktopOnly; those plugins will only run in an environment that has a desktop. If a SageTVService has a plugin installed that is DesktopOnly; it will not instantiate it or start it. If a SageTV UI or SageTVClient is run on the same machine; then that UI will have the option of enabling or disabling that plugin since it shares the same filesystem as the service and also has a desktop for properly loading the plugin.
Development Guidelines

· Common Dependencies - Plugins that utilize JAR files or other resources that will possibly be shared by other plugins should put those resources into a separate plugin. For example; the 'log4j' utility is used by many plugins. This utility exists in its own Library plugin called 'log4j'. Whenever a plugin is created that utilizes this; it will include the 'log4j' plugin as a dependency. This helps prevent multiple versions of JAR files from existing if they happen to have different names (such as log4j-1.0.jar and log4j-1.1.jar). If you are developing a plugin that uses a commonly available library; you are strongly encouraged to package it up as a separate plugin. There are already dozens of libraries pre-packaged as plugins that serve this purpose.
· Installation Testing - In order for a developer to properly test their plugin's manifest; there is a way to manually add things into the plugin repository on your own system for testing without actually adding them to the main SageTV repository. This is done by creating a file called SageTVPluginsDev.xml that is in the same folder as the SageTVPlugins.xml file downloaded from the server. The format of the file is the same. So for testing; you can make a copy of the SageTVPlugins.xml file; delete all of the <SageTVPlugin> items from it; and then insert your plugin manifest between the <PluginRepository> tags in the file. Whenever the plugin menus in the UI are entered; the repository listings will be refreshed. This will then allow you to test installation on your own without having to submit the plugin into the repository. Once your personal testing is complete; you can then submit it to the main repository using the web-based form.
